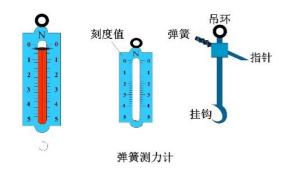
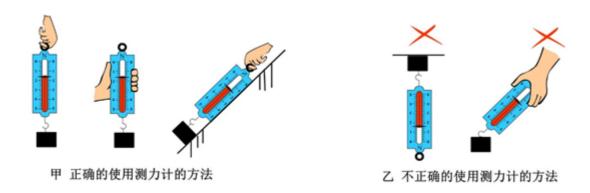


力学系列实验之弹力

1. 弹力基础

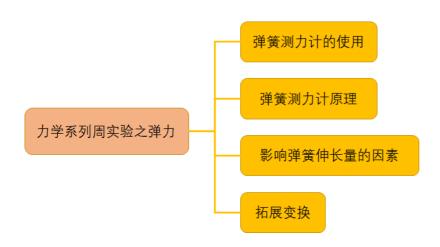

弹性和弹力

- (1)物体受力会发生形变,不受力时又恢复原来形状的性质叫做弹性.能够恢复原状的形变称为弹性形变.
- (2)物体由于发生弹性形变而产生的力称为弹力.通常的拉力、压力、支持力等都是由于物体发生微小弹性形变而产生的弹力.



弹簧测力计的原理和结构

- (1)弹簧测力计的原理:在一定的弹性限度内, 拉力越大,弹簧伸长越长, 并且弹簧伸长量与所受拉力成正比.
- (2)弹簧测力计的结构,如图所示.



弹簧测力计的使用方法

- (1)使用前拉一拉
- (2)使用弹簧测力计前要看它的量程(待测力不超过量程)、分度值(便于读数)、指针是否对齐零刻度线(调零或记录零误差).
- (3)将待测力施加在弹簧测力计的挂钩上,并与弹簧测力计的中心轴线方向一致,避免由于摩擦而带来较大误差.
- (4)指针稳定后,视线正对指针且应与弹簧测力计的刻度板垂直读数.
- (5)示数为挂钩一侧的力的大小.

2. 弹力常考实验题

弹簧测力计使用问题

፟ 【例题1】

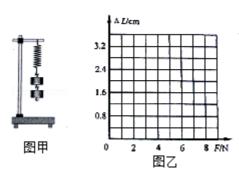
回答下列各题:

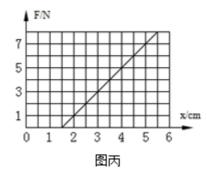
(1) 实验课上爱音思在弹簧测力计下方挂了一个重物,考验费嫚此时弹簧测力计的示数为

_____N.

- (2) 爱音思和费嫚讨论弹簧测力计,正确的是(
 - A. 弹簧测力计必须沿竖直放置,不得倾斜 B. 使用前必须检查指针是否在零刻度线
 - C. 弹簧测力计上的刻度不是均匀的
- D. 所测力不能超过测力计的测量范围

弹簧测力计原理


【例题2】


小林同学在研究弹簧弹力与弹簧伸长量的关系时,通过测量得到如下表所示的实验数据。要所示 的实验数据.根据表中数据归纳出弹簧弹力F与弹簧伸长量x的关系式为:F =_____.

x/cm	0	2	4	6	8	10	12
F/N	0	0.5	1	1.5	2	2.5	3.0

▶ 【例题3】

小明观察发现,弹簧测力计的刻度是均匀的,由此他猜想弹簧的伸长量与它受到的拉力成正比. 为了验证猜想,小明决定进行实验.

(1) 要完成实验,除了需要图甲中的一根两头带钩的弹簧、若干相同的钩码(每个钩码重力已

数据明显错误的是第 _____ 次实验.

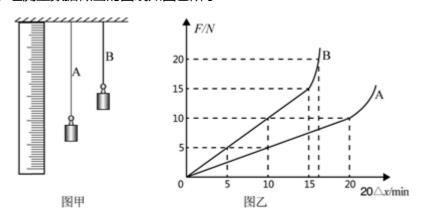
实验次数	1	2	3	4	5	6	7
拉力(钩码总重) <i>F/</i> N	0	1	2	3	4	5	6
弹簧伸长量ΔL/cm	0	0.40	0.80	1.70	1.60	2.00	2.40

- (2) 去除错误的一组数据,在图乙中作出弹簧伸长量与所受拉力的关系图线.
- (3) 由图象可验证小明的猜想是 _____ 的 . (填 "正确"或 "错误")
- (4) 小亮用另一根弹簧做了同样的实验,他将弹簧水平放置测出其自然长度,然后竖直悬挂让其自然下垂,在其下端竖直向下施加外力F,实验过程是在弹簧的弹性限度内进行的,用记录的外力F与弹簧的伸长量x作出的F-x图线如图丙所示.由图可知,该弹簧受到的拉力每增加1N,弹簧的伸长增加 _____ cm;该图线不过原点的原因是 _____ .

【 【例题4】

在"制作橡皮筋测力计"的活动中,同学们发现,在一定的范围内,橡皮筋受到的拉力越大,橡皮筋的长度越长、根据这一现象,小明和小丽提出各自猜想(如图),究竟谁的猜想正确呢,他们决定一起通过实验来验证自己的猜想。

- (2) 小明和小丽的实验记录数据如表:


1	拉力(钩码总重) F/N	0	0.5	1.0	1.5	2.0	2.5
2	橡皮筋的总长度L/cm	4.5	5.1	5.7	6.3	6.9	7.5
3	橡皮筋伸长的长度 $\Delta L/{ m cm}$	0	0.6	1.2		2.4	3.0

① 没有挂钩码时,橡皮筋的长度 $L_0 =$ cm.

- ② 表格中第3行的数据是 _____ cm.
- ③ 要判断小丽的猜想是否正确,应对表格中的 ______(填序号)两行数据进行分析比较。
- ④ 分析表格中的数据,你认为实验能初步验证 ______ 的猜想是正确的,你的判断依据: ______.
- (3)本实验中使橡皮筋伸长的力是 ______.(选填"钩码的重力"、"钩码的拉力"、"细线的拉力")

【例题5】

某实验小组的同学对A、B两根长度相同粗细不同的橡皮筋进行研究,并做成橡皮筋测力计.将橡皮筋的一端固定,另一端悬挂钩码(图甲所示),记录橡皮筋受到的拉力大小F和橡皮筋的伸长量 Δx ,根据多组测量数据做出的图线如图乙所示.

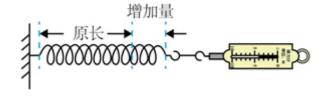
- (1) 当在两根橡皮筋上都悬挂重力为8N的物体时,橡皮筋A的伸长量为 $_{------}$ cm .
- (2)分别用这两根橡皮筋制成的测力计代替弹簧秤,则用橡皮筋 _____ 制成的测力计量程 大,用橡皮筋 _____ 制成的测力计测量的精确程度高(均选填 "A" 或 "B").

【 (例题6)

学习了弹力知识后,小萱发现:给弹簧施加拉力,当拉力越大时,弹簧的伸长量就越大.于是小萱提出猜想:弹簧的伸长量跟所受拉力成正比.实验桌上已经备有如下器材:两端有钩的弹簧一根、一个铁架台、一个刻度尺、六个质量均为50g的钩码. 他利用上述器材进行了以下实验: (1)将弹簧竖直挂在铁架台的横杆上使其静止,用刻度尺测出弹簧在不受拉力时的长度 L_0 并记录在表格中;

- (2)如图所示,在弹簧下端挂上1个钩码,待弹簧稳定后,钩码的重力等于弹簧受到的拉力,用刻度尺测出此时弹簧的长度L,并将F、L记录在表格中;
- (3) 依次在弹簧下端挂上 $2 \cdot 3 \cdot 4 \cdot 5 \cdot 6$ 个钩码(在弹簧的弹性限度内),仿照步骤(2) 再做五次实验,并将每次实验对应的 $F \cdot L$ 记录在表格中.

请根据以上叙述回答下列问题:



- (1) 小萱计划探究的问题中的自变量是 _____;
- (3)针对小萱计划探究的问题,他应该补充的步骤是:_______

- (4) 画出实验数据记录表格.
- 影响弹簧伸长量的因素

【 【例题7 】

为了研究弹簧受到拉力时,影响其长度增加量的有关因素,小明同学用测力计及一些不同的弹簧进行实验.如图所示,在实验中小明分别用力通过测力计拉伸不同的弹簧,测量并记录每根弹簧的原长、弹簧圈直径、长度增加量、所受拉力的大小等.记录数据如下列各表格所示,已知在同一表格中,实验所用弹簧的材料相同(即相同粗细的同种金属丝).

表一:材料甲				表二:材料乙						
序	原长	弹簧圈	长度增	测力计	序	原长	弹簧圈	长度增	测力计	
号	(cm)	直径(cm)	加量(cm)	示数(N)	号	(cm)	直径(cm)	加量(cm)	示数(N)	

1	10	1	2	5	5	10	1	2.2	5
2	10	1	4	10	6	10	1	4.4	10
3	10	2	4	5	7	10	2	4.4	5
4	20	1	4	5	8	20	1	4.4	5

请根据表格中记录测力计示数、弹簧长度增加量以及其它相关信息,归纳得出初步结论.

①分析比较实验序号 ______ 中的数据得到的初步结论是:材料、原长、弹簧圈直径相同的弹簧,所受拉力越大,长度增加量越大.

②分析比较实验序号 ______ 中的数据得到的初步结论是:拉力相同时,材料、原长相同的弹簧,弹簧圈直径越大,长度增加量越大.

③分析比较实验序号1、4(或5、8)中的数据得到的初步结论是: _____.

④进一步综合分析比较表一和表二中的相关数据,归纳得到的初步结论是: _____.

拓展变换

【 【例题8】

体育课上,同学们想"探究篮球反弹性能的强弱与哪些因素有关"大家提出了以下猜想: 篮球的反弹性能可能与篮球的材质有关,同学们通过找资料得知以下实验方案:"其它条件都相同,将不同的篮球从同一高度由静止释放下落,观察比较它们反弹后的高度,反弹后的高度越高,反弹性能越强。"同学们还设计了以下两种实验方案:

方案一:其它条件都相同,用力向下拍不同的篮球,观察比较它们反弹后的高度;

方案二:其它条件都相同,使不同的篮球反弹到相同的高度,观察比较它们所需自由释放下落的 高度.

- (1) 同学们找来了 _____ 不同,其它条件都相同的篮球;
- (2)按照方案一进行实验操作,其存在的问题是 _____;
- (3)像这种用反弹的高度来表示篮球反弹性能强弱的方法,在物理学上,我们把这种研究方法称之为 _____;
- (4)按照方案二探究,篮球所需自由下落的高度越高,反弹性能就越_____(选填"强"或"弱").